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Measurement of vorticity diffusion by NMR microscopy
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In a Newtonian fluid, vorticity diffuses at a rate determined by the kinematic viscosity. Here we use rapid
NMR velocimetry, based on a RARE sequence, to image the time-dependent velocity field on startup of a
fluid-filled cylinder and therefore measure the diffusion of vorticity. The results are consistent with the
solution to the vorticity diffusion equation where the angular velocity on the outside surface of the fluid,
at the cylinder’s rotating wall, is fixed. This method is a means of measuring kinematic viscosity for low
viscosity fluids without the need to measure stress.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A fluid is a material that deforms continuously when subjected
to a shearing stress. In contrast with solids, where deformation
determines stress, it is the rate of deformation that counts in fluids.
The measure of deformation is known as strain. In fluid mechanics,
even the simplest of flows often combine both strain and rotation,
the measure of rotational motion in a fluid being the vorticity
w ¼ r� v . However, while deformation of a fluid implies the pres-
ence of a velocity gradient, since a point in the material is moving
relative to another point, a velocity gradient is not always indica-
tive of a deformation. For example, purely rotational motion, such
as that in a rigid solid, demonstrates a velocity gradient in the ab-
sence of deformation. Flows where the vorticity is everywhere zero
(irrotational or potential flows) represent another special case
where deformation is possible in the absence of rotation. In this pa-
per, we shall be concerned with the migration of vorticity across a
fluid, a process that is governed by diffusion, and we show that
NMR provides a means of measuring this diffusion phenomenon.
In demonstrating this process we shall follow the evolution of
the flow field from an initial condition, where the vorticity is lim-
ited to the boundary of a stationary fluid, to a final state where the
vorticity has equilibrated across the fluid, resulting in a purely
rotational flow in which the vorticity is everywhere constant. The
chosen geometry is that of a fluid-filled cylinder, initially at rest,
but with a step change in angular velocity of the cylinder wall im-
posed at startup.
ll rights reserved.
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According to Kelvin’s circulation theorem [1], the basis of po-
tential flow theory, an incompressible fluid vorticity free at an in-
stant in time should remain so at any time. However, motion at a
boundary can act as a source of external vorticity. A stationary
fluid, initially vorticity free, when exposed to shearing forces will
become contaminated with vorticity at the fluid boundaries and
a velocity field develops. In the case considered here, fluid is con-
tained within a cylinder initially at rest. Upon sudden rotation of
the cylinder, frictional shear stresses occur at the solid–fluid inter-
face and exert a torque upon the adjacent fluid layer, causing it to
accelerate. This torque effectively ‘‘diffuses” along the radial
dimension until the fluid velocity reaches the familiar steady state
rigid body rotation linear velocity field. The appropriate dynamical
description is that of vorticity diffusion [1], as governed by a stan-
dard diffusion equation

@w
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¼ g

q
r2w ð1Þ

where the kinematic viscosity g/q is effectively a diffusion coeffi-
cient. In our experiment, MRI measurements of the velocity field
provide a window on the diffusion process. In order to have the nec-
essary time resolution, pulsed gradient spin–echo (PGSE) encoded
RARE imaging has been used to acquire spatially resolved measure-
ments of the fluid velocity field within 2 s. Due to the enhanced
temporal resolution of the velocity images, it is possible to directly
monitor the development of the velocity gradient to a steady state,
and thereby the diffusion of vorticity. We directly compare our
velocimetry results with the predictions of the vorticity diffusion
equation. A simple Newtonian fluid with low kinematic viscosity,
acetone, is compared with water and low molecular weight poly-
dimethylsiloxane, a shear thinning fluid that is Newtonian under
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Fig. 1. RARE velocity imaging pulse sequence.
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the conditions in this study. These results provide a nice demon-
stration of fundamental fluid mechanics. They also suggest a means
of measuring fluid viscosity via NMR velocimetry without the need
to measure the fluid stress, although this is by way of a curiosity
and not suggested as a practical and economical alternative to sim-
pler benchtop methods.

2. Vorticity diffusion in a cylinder

For a fluid contained in a cylinder at startup rotation, the rele-
vant vorticity diffusion equation uses cylindrical polar coordinates
(r, h, z). For an infinite cylinder of radius a, there is no z or h depen-
dence of the velocity and so the diffusion equation becomes
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q
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The vorticity, dependent upon both radial position and time,
can be separated into two functions which depend only upon
one variable each, wðr; tÞ ¼ uðrÞTðtÞ, reducing the partial differen-
tial equation to two ordinary differential equations. These equa-
tions may be set equal to the same constant, chosen for
convenience as �a2D, where the ‘‘diffusion coefficient” D = g/q, is
the kinematic viscosity [2].
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The general solution is then

wðr; tÞ ¼ uðrÞ expð�a2DtÞ ð4Þ

where d2uðrÞ
dr2 þ 1

r
duðrÞ

dr þ a2uðrÞ ¼ 0 is a Bessel’s equation of zeroth or-
der. After non-dimensionalization of the eigenvalues a by the cylin-
der radius a, the solution of this equation requires a Bessel function
of the first kind, the solution of the second kind being infinite at
r = 0 with the b = aa eigenvalues consistent with the boundary con-
ditions [3]. Therefore,

wðr; tÞ ¼
X1
n¼1

AnJ0ðbnr=aÞ exp � b2
nDt
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In order to use the vorticity diffusion process to monitor the
behavior of the fluid, we need to know the boundary condition.
At the fluid wall, the boundary condition is more easily described
from the standpoint of the constant fluid velocity at the cylinder
surface under the non-slip condition. At r = a, the fluid assumes
the maximum velocity of the rotating cylinder vmax ¼ aX where
X is the applied fixed angular velocity. For this reason, and because
the velocity field may be directly measured by NMR, we integrate
the vorticity to yield the spatio-temporal velocity dependence. The
initial and final states of the fluid velocity are known and provide a
means of getting the exact solution.

Since the relationship between vorticity and velocity is
w ¼ r� v ,

w ¼ 1
r
@ðrvÞ
@r

ð6Þ
where the direction of the vorticity vector is along the axis of the
cylinder. The conversion from wðr; tÞ to vðr; tÞ is based on integra-
tion using Eq. (6).

Imposing the condition that vðrÞ ¼ vmaxr
a as t !1 results in a

general solution

vðr; tÞ ¼ vmax
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At r = a, the velocity v(r) must go to the maximum velocity at
the rotating wall of the cylinder, vðaÞ ¼ vmax. To satisfy these con-
ditions, the bn must be roots of J1ðbnÞ ¼ 0 [4]. Now to solve for the
Bessel coefficients An, the condition that at t = 0, v(r) = 0 for all
0 < r < a results in the velocity equation
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Eq. (8) leads to the Bessel coefficient (see Appendix)
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and the velocity equation is
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The vorticity obtained by derivation then is

wðr; tÞ ¼ 2vmax
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3. Experimental methods and materials

To monitor the transient vorticity diffusion, a rapid NMR
velocimetry technique was necessary. The velocity measurements
were made using an adaptation of a RARE rapid imaging sequence
[5]. A PGSE gradient pair encoding for displacement is applied first,
then followed by a RARE CPMG train of slice-selective 180� radio
frequency pulses wherein frequency and phase encoding is used
to encode spatially in two dimensions. The entire k-space raster
is therefore collected within one excitation and in minimal time
and the Fourier transform is a 2D image over a slice. The pulsed
gradient pair of amplitude g and duration d separated by an obser-
vation time D [6–8] impart a phase to the NMR signal
/ ¼ expð�i2pqzÞ, where q ¼ 1

2p cdgz, that relates to the displace-
ment z in the applied gradient direction. The Fourier transform of
the signal with respect to q yields the propagator, or average prob-
ability distribution of spin displacement Pðz;DÞ, in each pixel of the
2D image. While 24 echoes were collected, only the even echoes of
the echo train were retained in order to eliminate ghosting arti-
facts in the image related to flow. The pulse sequence is shown
in Fig. 1. A slice of 4 mm thickness is selected along the vorticity
axis of the cylinder. Frequency encoding as applied in the radial
direction, resulting in a spatial resolution of 59 lm in the region
of interest across the cylinder, while phase encoding was along
the vorticity axis for a coarse spatial resolution of 7.5 mm where
the velocity did not change. Two velocity encoding gradient steps
(q = 0 and q – 0) were used, to keep the image acquisition time
short. The displacement-induced phase shift between the pixels
of the q = 0 and q – 0 images is a measure of the average velocity
over the time D, which was 10 ms in our experiment. Velocity val-
ues are obtained by zero filling images for remaining q values and
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then Fourier transforming with respect to q. Thus, one obtains a dis-
placement distribution convolved with the spectrum of a hat func-
tion. The maximum of this function corresponds to the
displacement of spins over the encoding period D and so the velocity
may be determined. The primary factor limiting the temporal reso-
lution is the repetition time. The repetition time was 750 ms, chosen
as the shortest possible before image quality was adversely effected
by signal losses due to incomplete longitudinal (T1) relaxation.

The NMR measurements were conducted on a Bruker
AVANCE400 spectrometer with a 9.4 T superconducting 89 mm
vertical bore magnet, Micro 2.5 imaging probe capable of produc-
ing maximum gradients of 15 G/mm with a Bruker GREAT-60
power supply and 25 mm diameter rf coil. Data were acquired
using the Bruker software package Topspin and analyzed with Pro-
spa (Magritek, Wellington, New Zealand) and Matlab� software.
The cylinder was a standard glass NMR tube of 18 mm inner diam-
eter. The cylinder rested inside a larger diameter NMR tube, with
Teflon spacers in the gap between cylinders in order to ensure
smooth rotation of the inner cylinder. A drive shaft assembly con-
nects the inner glass cylinder with a stepper motor drive system
that sits on top of the magnet and rotates the tube at a fixed fre-
quency. The time to reach the preset rotation speed on startup
was approximately 0.5 s. The fluids used were acetone with a kine-
matic viscosity at 20 �C of 0.41 cSt, water at 1 cSt, and poly-
dimethylsiloxane (MW = 5200) which has a high kinematic
viscosity of approximately 95 cSt.
4. Results and discussion

The analytical solution at several points in time of the vorticity
in a cylinder abruptly rotated is shown in Fig. 2, where acetone is
the fluid in the cylinder. As the cylinder begins to rotate, the fluid
b

a

Fig. 2. (a) A cylinder abruptly rotated has positive vorticity at the solid–fluid
boundary of the cylinder wall and negative vorticity in the cylinder center. (b) The
analytical solution for the vorticity across the cylinder diameter evolves with
increasing time as the vorticity diffuses throughout the cylinder, until it reaches a
constant steady state value. t = 2 s (thick line), 4 s (thin line), 6 s (thick dashed line),
12 s (thin dash-dot line) and 32 s (dotted line).
at the solid–liquid boundary of the cylinder glass wall adheres to
the surface, which then drags the fluid along as it rotates. The fluid
boundary layer exerts a stress on the next fluid layer, thereby con-
taminating the fluid near the wall with vorticity. For the rotating
cylinder geometry considered here, vorticity at the wall boundary
is positive and negative in the center. With increasing time, vortic-
ity diffuses throughout the tube becoming constant, the viscosity
of the solution begins to dominate rather than inertia and the
velocity profile reaches the familiar linear steady state solid body
rotation. In contrast, for the case of laminar fluid flow through a
cylinder, classic Poiseuille flow, vorticity would be positive at one
wall and negative on the other, annihilating at the center.

Fig. 3 shows the full solution wðr; tÞ across the cylinder radius
from t = 0 to 128 s. The colorscale is related to the vorticity magni-
tude. Fig. 3a shows a side view, where the vorticity across the cyl-
inder diameter as shown in Fig. 2 is visible. In Fig. 3b, the dataset is
rotated to highlight the timescale of the vorticity diffusion.
Fig. 3. Solution for the vorticity across the diameter of an abruptly rotated cylinder
with increasing time, demonstrating the diffusion of vorticity.
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Fig. 4. Velocity v(r, t) from the center of the cylinder to the outer rotating wall with
increasing time. The solution (lines) matches the data (symbols) well. t = 2 s (open
squares), 4 s (closed circles), 6 s (open triangles), 10 s (closed diamonds) and 64 s
(open circles).



24 J.R. Brown, P.T. Callaghan / Journal of Magnetic Resonance 204 (2010) 21–25
Since the solution is exact, there are no unknown parameters.
The data and the solution should match exactly, with a coefficient
equal to kinematic viscosity of the selected fluid. The rate of diffu-
sion depends only upon the kinematic viscosity of the fluid, while
the cylinder rotation rate affects only the boundary condition. Even
then it only determines the value of the maximum velocity at the
wall, which does not impact the time evolution of the vorticity.
Fig. 4 shows a comparison of the velocity field solution for acetone
compared to the RARE velocity imaging data with increasing time
as the cylinder starts rotation.

The lines are not in exact agreement, likely due to the �0.5 s
time to startup and the 750 ms time averaging inherent to the
RARE data, resulting in a consequent delay between velocity and
position encoding. Despite this temporal blurring and small distor-
tion of the effective experimental timescale, the fluid behavior is
accurately captured. When the kinematic viscosity in the solution
was varied to get the best fit of the data in Fig. 4, the variation from
literature values for acetone was found to be �10%. The RARE
velocity images also have some noise variations, but the agreement
between the analytical solution and the velocity imaging data is
still remarkably good, as demonstrated again in Fig. 5. The three-
dimensional dataset is represented with a color scale this time
Fig. 5. (a and b) Analytical solution for the velocity v(r, t), where acetone is the fluid in t
maximum velocity at the rotating glass wall is 8.24 mms�1.

Fig. 6. The analytical velocity field solution for (a) acetone, (b) water and (c) PDMS (MW
PDMS respectively. In all fluids, the velocity field reaches a nearly steady state within t
related to velocity. Fig. 5a shows the side view of the velocity
gradient across the cylinder diameter as shown in Fig. 4, and in
Fig. 5b the dataset is rotated to highlight the timescale of the vor-
ticity diffusion as the velocity profile changes shape until reaching
the steady state form.

Fig. 6 clearly shows the difference in the vorticity diffusion
timescale depending upon kinematic viscosity. From left to right,
acetone has the lowest kinematic viscosity of 0.41 cSt followed
by water at 1 cSt and finally a low molecular weight poly-
dimethylsiloxane (PDMS) at 95 cSt. For PDMS, the diffusion of
vorticity is so fast that the velocity field reaches a steady state
within the two seconds of the first RARE image.

5. Conclusion

NMR RARE rapid velocimetry has provided the means to mea-
sure vorticity diffusion via the spatio-temporal evolution of the
velocity profile. Vorticity diffusion is a fundamental fluid mechan-
ical concept difficult to measure by experiment, but through the
enhanced temporal resolution achieved from the combination of
PGSE and RARE imaging, good agreement was found between data
and the solution to the vorticity diffusion equation. These results
he rotating cylinder. (c and d) RARE velocity imaging data for v(r, t) of acetone. The

� 5200). The RARE velocity imaging data are (d), (e) and (f) for acetone, water and
he first 32 s after beginning rotation of the cylinder.
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also demonstrate how RARE velocimetry could be used to measure
fluid viscosity of low viscosity fluids by the time-dependent veloc-
ity alone, without the need for stress measurement.

Appendix A

To solve for the Bessel coefficients An the condition that at t = 0,
v(r) = 0 for all 0 < r < a results in the velocity equation

vmax

a
r ¼ a

X1
n¼1

An

bn
J1ðbnr=aÞ ðA:1Þ

Multiplying both sides of the equation by rJ1ðbmr=aÞ and inte-
grating from 0 to a,
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From the orthogonality relation for Bessel functions [3], the
right hand side of Eq. (A.2) is
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Using the identity J1ðbÞ ¼ �J00ðbÞ the left hand side of the Eq.
(A.2) is solved through integration by parts,
vmax

a

Z a

0
r2J1ðbmr=aÞdr ¼ �vmaxa2
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The Bessel coefficient is then

An ¼ �
2vmax

a
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